Sparse Matrix to Decimal Coding (SMDC) Algorithm

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Learning for Matrix Factorization and Sparse Coding Online Learning for Matrix Factorization and Sparse Coding

Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the large-scale matrix factorization problem that consists of learning the basis set, adapting it to specific data. Variations of this problem include dictionary learning in signal processing, non...

متن کامل

Sparse coding of total variability matrix

In text-independent speaker verification, it has been shown effective to represent the variable-length and information rich speech utterances using fixed-dimensional vectors, for instance, in the form of i-vectors. An i-vector is a low-dimensional vector in the so-called total variability space represented with a thin and tall rectangular matrix. Taking each row of the total variability matrix ...

متن کامل

Understanding Trainable Sparse Coding via matrix factorization

Sparse coding is a core building block in many data analysis and machine learning pipelines. Typically it is solved by relying on generic optimization techniques, such as the Iterative Soft Thresholding Algorithm and its accelerated version (ISTA, FISTA). These methods are optimal in the class of first-order methods for non-smooth, convex functions. However, they do not exploit the particular s...

متن کامل

Image Classification Algorithm Based on Sparse Coding

In this paper, the sparse coding and local features of images are combined to propose a new image classification algorithm. Firstly, online dictionary learning algorithm is employed to train the visual vocabulary based on SIFT features. Secondly, SIFT features are extracted from images and these features are encoded into sparse vector through visual vocabulary. Thirdly, the images are evenly di...

متن کامل

A fast algorithm for sparse matrix computations related to inversion

We have developed a fast algorithm for computing certain entries of the inverse of a sparse matrix. Such computations are critical to many applications, such as the calculation of nonequilibrium Green’s functions G and G for nano-devices. The FIND (Fast Inverse using Nested Dissection) algorithm is optimal in the big-O sense. However, in practice, FIND suffers from two problems due to the width...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Engineering Research and Applications

سال: 2017

ISSN: 2248-9622,2248-9622

DOI: 10.9790/9622-0707089294